Any-Dimension Algorithms
نویسندگان
چکیده
منابع مشابه
Algorithmic Interpretations of Fractal Dimension
We study algorithmic problems on subsets of Euclidean space of low fractal dimension. These spaces are the subject of intensive study in various branches of mathematics, including geometry, topology, and measure theory. There are several well-studied notions of fractal dimension for sets and measures in Euclidean space. We consider a definition of fractal dimension for finite metric spaces whic...
متن کاملValiant Metric Embeddings , Dimension Reduction
In the previous lecture notes, we saw that any metric (X, d) with |X| = n can be embedded into R 2 n) under any the `1 metric (actually, the same embedding works for any `p metic), with distortion O(log n). Here, we describe an extremely useful approach for reducing the dimensionality of a Euclidean (`2) metric, while incurring very little distortion. Such dimension reduction is useful for a nu...
متن کاملDetermination of Optimal Parameters for Finite Plates with a Quasi-Square Hole
This paper aims at optimizing the parameters involved in stress analysis of perforated plates, in order to achieve the least amount of stress around the square-shaped holes located in a finite isotropic plate using metaheuristic optimization algorithms. Metaheuristics may be classified into three main classes: evolutionary, physics-based, and swarm intelligence algorithms. This research uses Ge...
متن کاملOptimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces
We investigate regularized algorithms combining with projection for least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal r...
متن کاملA Tale of Two Puzzles
Towers of Hanoi and Spin-Out are two puzzles with different physical manifestations but similar graphical properties. Towers of Hanoi is well known and Spin-Out less so, and in this paper we discuss a puzzle formed by a combination of concepts from both puzzles. Towers of Hanoi may be generalized to a puzzle in any odd dimension and Spin-Out to any 2m-dimension puzzle, and so their combination ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992